
A renormalisation group approach to the Potts model on the Koch curve

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 3185

(http://iopscience.iop.org/0305-4470/19/15/038)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 3185-3189. Printed in Great Britain 

COMMENT 

A renormalisation group approach to the Potts model on the 
Koch curve 

Yung Qin and Z R Yang 
Department of Physics, Beijing Normal University, Beijing, China 

Received 21 January 1986 

Abstract. A three-parameter decimation renormalisation is constructed and used to produce 
exact RG recursion relations for the Potts model on the Koch curve including all the 
nearest-neighbour interactions. Only two trivial fixed points are obtained. We show that 
no phase transition occurs at finite temperature. 

Recently, a great deal of attention has been paid to critical behaviour on fractals. The 
reason is that the percolation cluster at threshold may be represented by a random 
fractal. More generally, a fractal can be considered as a crude approximation for a 
disordered system and results obtained for fractals may have some relevance for real 
random systems. 

A regular fractal is much more easy to treat than a random one. Many research 
works focus on the study of critical properties of spin models on regular fractals. Some 
very powerful approaches, such as transfer matrix techniques (Andrade and Salinas 
19841, decimation renormalisation (Gefen et a1 1980, 1983, 1984a, b) and a Migdal- 
Kadanoff bond-moving method (Gefen et al 1984a) were used. Gefen et al have 
treated the Ising model on a Koch curve with a decimation procedure (Gefen et a1 
1980). Unfortunately, they do not include all nearest-neighbour interactions. Andrade 
and Salinas allow all nearest-neighbour interactions not only between, for example, 
(5,6), (6,7), (6,8), (7,8) and (8,9), but also between (8, 10) (see figure 2). They employ 
a transfer matrix approach to calculate the partition function and obtain an exact 
analytic result in zero magnetic field. However, this method in this case will lead to 
many more complications and will fail if a single-parameter decimation procedure is 
used. 

In this comment we report a three-parameter renormalisation group treatment for 
the q-state Potts model (the king model is a special case of q = 2) on the Koch curve. 
The first two stages of the structure of the Koch curve are shown in figures 1 and 2. 
In our model all nearest-neighbour interactions will be considered. To obtain exact 
recursion relations we introduce three kinds of coupling parameters J, K and L: ( a )  
K,  for nearest neighbours along the curve, which correspond to bonds forming triangles, 

Figure 1. Koch curve for the first stage of the construction. 
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Figure 2. Koch curve for the second stage of the construction 

such as (2,3), (3,4), (6,7), (8,9), etc; ( b )  J, for nearest neighbours along the curve, 
but which do  not correspond to bonds forming triangles, such as (1,2), (4, 5), ( 5 , 6 ) ,  
etc, and (c)  L, for nearest neighbours shown in broken lines in the figures, which do  
not correspond to bonds along the curve, such as (2,4), (6,8), (8, lo), etc (see figure 
2). We write the q-state Potts model Hamiltonian on the Koch curve as follows: 

where N indicates the N t h  step of the construction. 
Before proceeding with the decimation procedure, we first analyse the construction 

of the Koch curve. It will be found that the two units shown in figure 3 are the basic 
components which compose any construction stage of the Koch curve. 

Let us define four matrices as follows: 

Obviously, all these matrices are symmetric about their diagonal and commute with 
one another, and the product of these matrices still keeps the above properties. By 
means of (2), we get the following expressions which we will use later: 

(a1 i b )  

Figure 3. The two basic units which compose any construction stage of the Koch curve. 
( a )  Unit 1, ( b )  unit 2. 
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where a and p indicate the state of Potts spin. 
We now proceed to present the decimation renormalisation. To construct recursion 

relations we consider the two basic units as the components of the original nth 
construction stage of the Koch curve. By integrating over the spins on some sites and 
leaving the remainder fixed, we obtain a renormalised construction which has the 
components of the ( n  - 1)th construction stage. The RG procedure is shown schemati- 
cally in figures 4( a )  and ( b ) .  They respectively correspond to the following expressions: 

i c i  

Figure 4. A schematic RG transformation. ( a )  Decimating a,, a, and a4 and leaving a,  
and U ,  fixed in unit 1; ( b )  decimating a*, a3, a4, a6, a, and a, and leaving a l ,  a, and aq 
fixed in unit 2; ( c )  the RG transformation from the second to the first construction stage. 
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and give rise to the recursion relations as follows: 

e-."= P2(J,  K, L ) / P , ( J ,  K ,  L )  

e-2K'= M2(J,  K, L ) / M , ( J ,  K,  L )  

e-L'-K'= M3(J ,  K ,  L ) / M , ( J ,  K ,  L )  

where PI, P2, MI, M 2  and M3 represent respectively 

P1 =(a11e26~a5)lol=a5 =[C2rjIaa 
~ 2 = ( a l l ~ 2 ~ l a 5 ) l . , . . ,  = [C2DIu, 

A *  

= ((ai I e661 a5)( a5/ as) + (e" - 1 ( a  I I e61 a6)( a61 a9>((a61 5 I I (II = a5 = aq 
06 

= (e" - 1 I[([ 261aa ) * ( [ j l a a  )' + ( 4  - 1 e61a.p l 2 ( [ j 1 a p  1'1 + ([eifi~aa l 2  
(7) 

~ 2 =  ((a,lej6la5)(a,ie861a9)+ (eL- 1) C ( a 1 1 ~ B l a 6 ) ( a 6 1 C 6 1 a , > ( ( a 6 1 8 1 a 5 ) ) 2 ) l a , = a q ~ a ,  
46 

= (eL - 1 I{([ e 6 1 u a  l2([f i1ap 1 2 +  ([ e 6 1 u p  ~ ~ [ ( [ j ~ a a  l2  
(8) 

M 3  = (( 11 e65\ a51 e661 a9> + (eL - ) 1 I e6\ a6)( a61 e61 a9)( (  a61 j I  1 a1 = a5 f a4 
06 

= (eL-  1){[e.1aa[e61ap[([j1aa)~+([81ap)~1 

+ ( q  - 2)( [ e6Ia,)2( [ 8Ia, 121 + [&86Iaa [ e86lap. (9) 

In order to study the critical behaviour we must find the fixed points of equation 
( 6 ) .  It is clear that J* = K *  = L* =CO is one of the fixed points because the total order 
of powers of ex in PI is higher than one in P2 and the total order of powers of ex in 
M ,  is higher than one in M2 and M,, where ex denotes eL', eK* and eJ*. This fixed 
point corresponds to a completely ordered phase of the system at zero temperature. 
To find the other fixed point we rewrite the expressions in (6) as 

(e'* - l)(e'*+ q - 1)[eL*(2eK*+ q -2)  + (e2K*+ q - l)(e'*+ q -2)1= o 
(eK'- l)[eL*(e2K*+ q - l)+(e '*+ q -2)(2 e K * +  q -211 

x{[eL*(e2K*+q- l)+(e '*+q-2)(2 eK*+ q-2)1  

x [ ( e 2 K * +  q -  l ) (eL*+K*+eL*+ q -2)+(q  -2)eK*(eK*+ q -  111 

+ q -  l ) + ( q  - 1)(2 eK*+ q-2)](eK'+ q - 1)) = O  + 2 eK*[ e."+ L*( e2K * 

x [eL*(e2K*+q- l )+(eJ*+q-2) (2eK*+q-2) ]  

x {eL*[eL*+2K* + eL*+ ( q  -2)(eK* + 111 -2(q - 1)) 

+ [eL*(e2K*+ q - I ) +  (e'*+ q -2)(2 ek*+ q -2)12 

~ { e ~ * + ~ * [ ( e " * -  l ) ( q  - 2 ) + ( q  - l)(e"*+ q -211 - ( q  - l ) (eL*+q -2)) 

+ q - l ) + ( q -  1)(2 e K * + q - 2 ) ]  (10) 
eK*[eJ*+L*(e2K*  

= 0. 
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For the ferromagnetic interaction, we have J, K and L >  0. In the first equation of 
(lo),  only ( J *  = 0, K * ,  L*) is a possible solution for q > 1. Substituting it to the second 
equation of ( lo),  we obtain the solution ( J *  = 0, K *  = 0, L*).  Similarly, substituting 
the latter in the third equation of ( lo),  we finally reach the unique solution ( J *  = K *  = 
L* = 0) which corresponds to a disordered phase at high temperature. 

In summary, we have performed a decimation renormalisation for the Potts model 
on the Koch curve including all the nearest-neighbour interactions, through introducing 
three kinds of coupling parameters J, K and L. The recursion equations are produced 
and their fixed points are found. We have noted that both fixed points J* = K * = L* = 0 
and J* = K * = L* = CO are trivial, which shows that no phase transition occurs at finite 
temperature. 

We would like to thank Professor Ka Xin-Lin for encouragement and support in our 
work. This work is supported in part by the Science Funds of the Chinese Academy 
of Sciences. 
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